Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Геофизика >> Геофизические методы поисков и разведки месторождений полезных ископаемых | Курсы лекций
 Обсудить в форуме  Добавить новое сообщение

Геофизические методы исследования земной коры.

В.К. Хмелевской (Международный университет природы, общества и человека "Дубна")
Международный университет природы, общества и человека "Дубна", 1997 г.
Содержание

По способу проведения работ геофизические исследования подразделяются на следующие технологические комплексы: аэрокосмические (дистанционные), полевые (наземные), акваториальные (или аквальные, океанические, морские, речные), подземные (шахтно-рудничные), геофизические исследования скважин (ГИС). Иногда дистанционные методы изучения Земли с помощью самолетов, вертолетов, искусственных спутников, пилотируемых космических кораблей и орбитальных станций не считают геофизическими, поскольку при этих работах преобладают съемки в видимом диапазоне спектра электромагнитных волн (фото- и телевизионные съемки). Однако, кроме таких визуальных наблюдений все чаще используются дистанционные методы невидимого диапазона электромагнитных волн: инфракрасные, радиолокационные (радарная и радиотепловая), радиоволновые, ядерные, магнитные и другие съемки, которые являются сугубо геофизическими.

Особое место в геофизике занимают геофизические исследования скважин (ГИС), отличающиеся от прочих геофизических методов специальной аппаратурой и техникой наблюдений и имеющие большое прикладное значение при документации разрезов скважин. Эти методы называют также буровой, промысловой геофизикой или каротажом.

Как отмечалось выше, верхние оболочки Земли являются предметом исследования не только геофизических методов, но и других наук: геологии со всеми разделами, геохимии, географии и др. Геофизические методы исследования, базируясь на этих науках, являются, прежде всего, геологическими. Вместе с тем, давая другим наукам о Земле всевозможную информацию, они изменяют сам характер геологоразведочных работ. О большой роли геофизики говорит, например, такой факт: треть ассигнований и четверть специалистов в геологоразведочных организациях связаны с геофизикой.

Теория геофизических методов исследований - физико-математическая, а сама эта прикладная отрасль геофизики и геологии относится скорее к точным наукам в отличие от описательной, какой все еще является геология. Математическое моделирование, т.е. решение геофизических задач с помощью математики, настолько сложно, что здесь используются передовые ее достижения и самый высокий уровень компьютеризации. На геофизических задачах в немалой степени совершенствуется математический аппарат. Математическое решение прямых задач, т.е. определение параметров физического поля по известным физическим свойствам, размерам и форме геологических объектов, хотя иногда очень сложно, но однозначно. Вместе с тем, одно и то же распределение параметров физического поля может соответствовать различным соотношениям физических свойств и размеров геологических объектов. Иными словами, математическое решение обратной задачи геофизики (как и вообще математической физики), т.е. определение размеров геологических объектов и свойств слагающих их пород по наблюденному полю, не только значительно сложнее, но и, как правило, неоднозначно.

Аппаратура геофизических методов исследования основана на использовании механики, электроники, автоматики, вычислительной техники, т.е. способы измерений - физико-технические. При этом инструментальный уровень очень высокий, а сама аппаратура через каждые 5 - 10 лет полностью обновляется.

Методика, т.е. способ проведения работ, сводится к профильным, а чаще площадным геофизическим съемкам. Густота сети наблюдений зависит от поставленных задач, масштабов съемки, размеров и глубины залегания разведываемых объектов.

В результате геофизических съемок получаются графики и карты наблюденных параметров поля. Их обработка состоит из всевозможных трансформаций наблюденных полей, качественного (визуального) выделения аномалий, их физико-математической интерпретации, выполняемой, как правило, с помощью ЭВМ и геологического истолкования результатов. Физико-математическая интерпретация выполняется на основе физико-геологических моделей (ФГМ), приближенно соответствующих реальным геологическим объектам. Сущность моделирования сводится к аппроксимации разведываемых объектов априорными (до опыта) ФГМ, т.е. телами простой геометрической формы (шар, столб, цилиндр, пласт и др.) или сложной формы с разными контрастностями их физических свойств по сравнению с окружающей средой. Для выбранных ФГМ решаются прямые задачи и теоретические материалы сравниваются с наблюденными. Меняя параметры ФГМ, в ходе математического моделирования добиваются минимальных расхождений расчетных и наблюденных полей. Полученные апостериорные (после опыта) ФГМ и являются наиболее вероятным результатом интерпретации. Чтобы добиться более однозначной интерпретации, нужна дополнительная информация: сведения о физических свойствах пород, например, по ГИС, данные других геолого-геофизических методов. Процессы обработки экспериментальных данных и физико-математической интерпретации разрабатываются в вычислительной геофизике.

Геологическое истолкование геофизических данных основывается на полнейшем использовании всей качественной и особенно количественной параметрической геологической информации. С ее помощью устанавливаются теоретические, логические или статистические связи между геолого-геофизическими характеристиками Среды, полученные на эталонных и опорных точках, которые переносятся на все рядовые точки наблюдения.

Эффективность разведочной геофизики в решении той или иной задачи определяется правильным выбором метода (или комплекса методов), рациональной и высококачественной методикой и техникой проведения работ, качеством как геофизической интерпретации, так и геологического истолкования результатов.

Сложность геофизической интерпретации объясняется как неоднозначностью решения обратной задачи, так иногда и приближенностью самого решения. Поэтому из нескольких возможных вариантов интерпретации необходимо выбрать наиболее достоверный, что можно сделать, если использовать все сведения о физических свойствах пород района исследований, об их литологии, тектоническом строении, гидрогеологических условиях. Иными словами, лишь при хорошем знании геологии района можно дать наиболее достоверное истолкование результатов геофизических методов исследований, что требует совместной работы геофизиков и геологов при интерпретации. Последнее, очевидно, нельзя выполнить, если геофизики не имеют прочных знаний по геологическим дисциплинам и слабо знакомы с изучаемым районом, а геологи не разбираются в сущности и возможностях тех или иных методов геофизической разведки.

Важнейшим методологическим принципом, понимая под которым теорию рациональной деятельности, для геофизической разведки является комплексирование: межметодное геофизическое (применение хотя бы 2 - 3-х из перечисленных методов геофизики), разноуровневое (аэрокосмические, аквально-полевые, подземно-скважинные наблюдения), междисциплинарное (использование геологической, гидрогеологической, биологической, медицинской и другой информации). Методика комплексных исследований характеризуется стадийностью (переходом от легких методов к тяжелым, от мелких масштабов к крупным), выборам типовых комплексов для определенных условий и решаемых задач, переходом к рациональным экономически обоснованным методам решения конкретных задач. Теория комплексной интерпретации на базе компьютерных технологий разрабатывается вычислительной геофизикой или геофизической информатикой. Цель комплексной интерпретации сводится к достижению однозначности геологических выводов путем выбора, анализа, оптимизации ФГМ.

Возрастание роли геофизики в связи с увеличением глубин и сложности разведки месторождений ведет не к замене геологических методов геофизическими, а к рациональному их сочетанию, широкому использованию всеми геологами данных геофизики. Единство и взаимодействие геологической и геофизической информации - руководящий методологический принцип комплексирования наук о Земле. Объясняется это тем, что возможности каждого частного метода геологоразведки (геологическая съемка, бурение, проходка выработок, геофизика, геохимическая разведка и др.) ограничены. Однако, в любых условиях геофизика облегчает разведку глубокозалегающих полезных ископаемых, особенно в труднодоступных районах.

Сближение и совместное использование и геологической, и геофизической информации - единственный разумный и экономически целесообразный путь изучения недр.

Таким образом, обобщая сказанное выше, следует повторить, что исследования земной коры (прикладная геофизика) - это многогранная научно-прикладная дисциплина со сложной структурой и разными подходами к классификациям по:

  • используемым полям (грави-, магнито-, электро-, сейсмо-, терморазведка и ядерная геофизика),
  • технологиям и месту проведения работ (аэрокосмические, полевые, акваториальные, подземные методы и геофизические исследования скважин),
  • прикладным направлениям и решаемым задачам (глубинная, региональная, разведочная, инженерная и экологическая геофизика),
  • видам деятельности (теоретическая, инструментальная, экспериментальная, вычислительная и интерпретационная геофизика).
  • Геофизические методы исследования недр начали развиваться с 20-х годов ХХ века. Однако, ее физико-математические основы заложены значительно раньше. Так же давно началось использование физических полей Земли для практических целей. Ранее других методов возникла магниторазведка. Первые сведения о применении компаса для разведки магнитных руд в Швеции относятся к 1640 году. Теория гравитационного поля Земли берет свое начало с 1687 года, когда Ньютон сформулировал закон всемирного тяготения. В 1753 году М.В.Ломоносов высказал мысль о связи значений силы тяжести на земной поверхности с внутренним строением Земли и разработал идею газового гравиметра. Его же работы в области сейсмологии, атмосферного электричества можно считать первыми, относящимися к геофизическим исследованиям Земли. Первыми работами по электроразведке можно считать наблюдения Р.Фокса (Англия) в 1830 г. естественной поляризации сульфидных залежей и Е.И.Рогозина (Россия), который в 1903 г. дал первое изложение основ этого метода. В 1913 г. К.Шлюмберже (Франция) разработал метод электроразведки постоянным током, а в 1918 г. К.Зунберг и Н.Лунберг (Швеция) предложили электроразведку переменным током. Со временем установления Кулоном закона взаимодействия магнитных масс (1785 г.) начинается развиваться теория земного магнетизма. Первыми систематическими разведочными работами в России и в мире были съемки Курской магнитной аномалии (КМА), начатые профессором МГУ Э.Е.Лейстом в 1894 г., а также проведенные магнитные съемки на Урале Д.И.Менделеевым и в районе Кривого Рога И.Т.Пассальским в конце прошлого века. В 1919 г. были начаты магнитные съемки на КМА. Именно эти работы можно считать началом развития отечественной разведочной геофизики. Теоретические работы Э.Вихерта (Германия) и Б.Б.Голицына (Россия) в начале этого века в области сейсмологии имели самое непосредственное отношение к созданию сейсморазведки.

    Среди советских ученых, заложивших основы геофизических методов исследования, можно отметить Л.М.Альпина, В.И.Баранова, В.И.Баумана, В.Р.Бурсиана, В.Н.Дахнова, Г.А.Гамбурцева, А.И.Заборовского, А.Н.Краева, П.П.Лазарева, А.А.Логачева, А.А.Михайлова, Л.Я.Нестерова, П.П.Никифорова, А.А.Петровского, М.К.Полшкова, Е.Ф.Саваренского, А.С.Семенова, Л.В.Сорокина, Ю.В.Резниченко, Л.А.Рябинкина, А.Г.Тархова, В.В.Федынского, О.Ю.Шмидта, Б.М.Яновского.

    В настоящее время по уровню теории и практическому использованию отечественная геофизика занимает передовые позиции в мире.

    Назад | Вперед


     См. также
    КнигиГеофизические методы исследования земной коры. Часть 2
    КнигиГеофизические методы исследования земной коры. Часть 2 : Геофизические методы исследования земной коры.
    ТезисыРоль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований: Роль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований

    Проект осуществляется при поддержке:
    Геологического факультета МГУ,
    РФФИ
       
    TopList Rambler's Top100